
 

 

 

Module 3: Memory Interfacing and Data Transfer 
Mechanisms 
This module delves into the crucial aspects of how microprocessors and 
microcontrollers effectively communicate with and manage memory, as well as 
efficient mechanisms for data transfer. We will begin by exploring fundamental 
memory interfacing techniques, including the essential role of decoding logic in 
address mapping and the process of memory chip selection. This will be followed by 
a detailed examination of interfacing considerations specific to both Static RAM 
(SRAM) and Dynamic RAM (DRAM), highlighting their practical implications and 
challenges. The module then transitions into the vital concept of interrupts, 
explaining their types, the intricate process of interrupt handling, and the structure of 
Interrupt Service Routines (ISRs). Building on this, we will cover strategies for 
prioritizing and nesting interrupts to manage multiple asynchronous events 
efficiently. Finally, we will conclude with a comprehensive discussion of Direct 
Memory Access (DMA), elucidating its principles, the operation of a DMA controller, 
and its significant advantages for achieving high-speed data transfer in complex 
microcomputer systems. 

3.1 Memory Interfacing Techniques: Decoding Logic, Address Mapping, 
and Memory Chip Selection 
Effective communication between the CPU and memory devices is paramount for any 
microcomputer system. This communication relies on precise memory interfacing 
techniques, which ensure that the CPU can correctly select and interact with the 
intended memory location. The core of these techniques involves address mapping 
and decoding logic to achieve memory chip selection. 

3.1.1 Address Mapping 

Address mapping is the process of assigning a unique range of physical memory 
addresses from the CPU's total address space to specific memory chips or banks 
within the system. Every memory chip, regardless of its size, has a certain number of 
internal memory locations, each with its own internal address. The CPU's address bus 
must be connected such that its address lines can select both the correct chip and 
the correct internal location within that chip. 

● Total CPU Address Space: Defined by the number of address lines the CPU 
possesses. If a CPU has 'N' address lines, it can generate 2N unique 
addresses. 

○ Formula: Total Addressable Locations = 2Number of Address Lines 
○ Numerical Example: A CPU with 16 address lines (A0 to A15) can 

address 216=65,536 unique memory locations. If each location stores 1 
byte, this is 64 Kilobytes (KB) of address space. 



 

● Chip Capacity and Internal Addressing: Each memory chip (e.g., an 8KB ROM 
chip) has its own storage capacity. An 8KB chip (8 * 1024 bytes = 8192 bytes) 
requires 13 internal address lines to uniquely identify each of its 8192 locations 
(since 213=8192). So, the CPU's lower 13 address lines (A0 to A12) would 
typically be connected directly to the memory chip's internal address pins. 

● Address Range Assignment: When multiple memory chips are used, different 
sections of the CPU's overall address space are allocated to distinct chips. For 
instance, in a 64KB address space, a 16KB ROM might occupy addresses 
0000H to 3FFFH, while an 8KB RAM might occupy 4000H to 5FFFH. 

3.1.2 Decoding Logic and Memory Chip Selection 

Since all memory chips share the same address and data buses, a mechanism is 
required to activate only the specific chip that corresponds to the address currently 
placed on the address bus by the CPU. This mechanism is called decoding logic, and 
its output is typically a Chip Select (CS or CE, Chip Enable) signal. When CS is active 
(usually low), the memory chip's data pins are enabled, allowing data transfer. When 
CS is inactive, the chip effectively disconnects itself from the data bus, preventing 
interference. 

Decoding logic analyzes the higher-order (most significant) address lines from the 
CPU that are not used for internal addressing of the memory chip. These higher-order 
lines are used to determine which specific memory chip (or I/O device) should be 
selected. 

There are several levels of decoding logic: 

● Full Decoding: Every unique address line combination maps to a single, 
unique memory location. This is ideal, as it leaves no unused or overlapping 
address ranges. It often requires more complex decoding logic using logic 
gates (AND, NAND, NOR) or dedicated decoder ICs (e.g., 74LS138 3-to-8 line 
decoder). 

○ Numerical Example (Full Decoding): 
Consider a CPU with 16 address lines (A0-A15) and two 4KB RAM chips. 
A 4KB chip requires 212=4096 internal addresses, so A0-A11 are 
connected to the chip's address pins. 
This leaves address lines A12, A13, A14, A15 for decoding. 
Let's assign: 

■ RAM Chip 1 to addresses 0000H to 0FFFH. 
Binary Address Range: 0000_0000_0000_00002  to 
0000_1111_1111_11112 . 
Notice that A15, A14, A13, A12 are all '0' for this range. 

■ RAM Chip 2 to addresses 1000H to 1FFFH. 
Binary Address Range: 0001_0000_0000_00002  to 
0001_1111_1111_11112 . 
Notice that A15, A14, A13 are '0', and A12 is '1' for this range. 

○ The decoding logic for RAM Chip 1's CS could be: 
CS1 =A15⋅A14⋅A13⋅A12 (using a 4-input NAND gate or a 4-to-16 decoder 



 

output). 
The decoding logic for RAM Chip 2's CS could be: 
CS2 =A15⋅A14⋅A13⋅A12 

● Partial Decoding: Only a subset of the necessary high-order address lines are 
used for decoding, simplifying the logic. This often leads to multiple valid 
addresses (aliasing) for the same memory location (e.g., both 2000H and 6000H 
might access the same chip), and also creates unassigned (phantom) 
addresses. While simpler, it's generally discouraged in systems requiring high 
reliability or flexibility, but sometimes used in very simple, low-cost embedded 
systems where address space is not a concern. 

○ Numerical Example (Partial Decoding): 
Again, a 16-bit address bus and a single 4KB RAM chip (A0-A11 for 
internal addressing). 
Instead of using all A12-A15 for decoding, we might simply use A15. 
CS=A15 
This means the chip is selected whenever A15 is 0. Its effective address 
range would be 0000H to 7FFFH. 
This 4KB chip now "appears" at many different 4KB blocks within that 
32KB range (e.g., 0000H−0FFFH, 1000H−1FFFH, ..., 7000H−7FFFH). 
Writing to 0000H or 1000H or 2000H would all write to the same physical 
location within the 4KB chip. This is address aliasing. The unassigned 
part of the memory space (addresses 8000H to FFFFH) would be 
inaccessible. 

Memory Read/Write Cycle: 

Once a chip is selected, data transfer occurs over the data bus, controlled by the 
CPU's read/write signals. 

1. Read Cycle: 
○ CPU places address on Address Bus. 
○ CPU asserts READ signal (e.g., sets RD low). 
○ Decoding logic activates CS of the selected memory chip. 
○ Selected memory chip places data from the addressed location onto the 

Data Bus. 
○ CPU latches (reads) data from Data Bus. 

2. Write Cycle: 
○ CPU places address on Address Bus. 
○ CPU places data to be written on Data Bus. 
○ CPU asserts WRITE signal (e.g., sets WR low). 
○ Decoding logic activates CS of the selected memory chip. 
○ Selected memory chip latches (writes) data from Data Bus into the 

addressed location. 



 

3.2 Static and Dynamic RAM Interfacing: Practical Considerations and 
Challenges 
While the general principles of memory interfacing apply to both SRAM and DRAM, 
their fundamental internal structures necessitate different practical considerations 
and present unique challenges during integration into a microcomputer system. 

3.2.1 Static RAM (SRAM) Interfacing 

SRAM stores data using latches (flip-flops), meaning each bit requires multiple 
transistors (typically 4-6). This makes SRAM faster, but also more expensive and less 
dense than DRAM. 

● Interfacing Requirements: 
○ Address Lines: Directly connected from the CPU's address bus to the 

SRAM chip's address pins. 
○ Data Lines: Bidirectionally connected from the CPU's data bus to the 

SRAM chip's data pins. 
○ Control Signals: 

■ Chip Enable (CE or CS): Active low signal from decoding logic to 
enable/disable the chip. 

■ Output Enable (OE): Active low signal, usually tied to the CPU's 
RD (Read) signal. When active, it enables the SRAM's data output 
drivers onto the data bus. 

■ Write Enable (WE): Active low signal, usually tied to the CPU's 
WR (Write) signal. When active, it allows data on the data bus to 
be written into the selected memory location. 

● Practical Considerations and Advantages: 
○ Simplicity: SRAM interfacing is relatively straightforward. Once 

powered, it retains data as long as power is applied and does not 
require periodic refreshing. 

○ Speed: Due to its static nature and direct access, SRAM offers very fast 
read/write times, making it ideal for caches, critical buffers, and small 
on-chip memory in microcontrollers. 

○ No Refresh Circuitry: The absence of a refresh requirement simplifies 
the control logic and reduces system complexity compared to DRAM. 

○ Low Power in Standby: SRAM typically consumes less power when not 
actively being accessed (in static state) compared to DRAM. 

● Challenges: 
○ Cost: Significantly more expensive per bit than DRAM. 
○ Density: Lower storage density (less memory per unit area) due to more 

transistors per cell. This limits its use for large main memory in 
cost-sensitive systems. 

○ Pin Count: Higher pin count for larger capacities compared to DRAM, as 
all address lines are typically exposed. 

3.2.2 Dynamic RAM (DRAM) Interfacing 



 

DRAM stores data as electrical charges in tiny capacitors, with each bit requiring only 
one transistor and one capacitor. This makes DRAM very dense and cost-effective, 
but also volatile and more complex to interface. 

● Interfacing Requirements (Key Differences from SRAM): 
○ Multiplexed Address Lines: DRAM chips typically have multiplexed 

address pins. This means the same physical address pins are used to 
receive both the row address and the column address sequentially, 
rather than all address bits simultaneously. This reduces the pin count 
on the chip, allowing for higher densities in smaller packages. 

○ Row Address Strobe (RAS) and Column Address Strobe (CAS): These 
control signals are crucial for the multiplexing process. 

■ CPU sends the row address on the address bus, then asserts 
RAS (active low) to latch the row address into the DRAM. 

■ CPU then changes the address bus to send the column address, 
then asserts CAS (active low) to latch the column address into 
the DRAM. 

■ Data transfer then occurs. 
○ DRAM Controller / Refresh Circuitry: This is the most significant 

difference. Due to charge leakage from the capacitors, DRAM requires 
periodic refreshing to prevent data loss. A dedicated DRAM controller 
(either a standalone IC or integrated into the CPU/microcontroller) is 
responsible for: 

■ Generating the multiplexed row/column addresses. 
■ Issuing RAS and CAS signals at the correct timings. 
■ Performing refresh cycles at regular intervals without 

interrupting ongoing CPU operations excessively. A refresh cycle 
involves reading and immediately writing back the data in a row 
of memory cells to replenish their charge. 

● Practical Considerations and Advantages: 
○ Cost-Effectiveness: Much cheaper per bit, making it the dominant 

choice for main memory in systems requiring large capacities (e.g., 
PCs, servers). 

○ High Density: Can store significantly more data in a given physical 
space. 

● Challenges: 
○ Complexity of Interfacing: Requires a sophisticated DRAM controller to 

manage address multiplexing, timing, and refresh operations. This adds 
hardware complexity and cost to the system design. 

○ Refresh Overhead: The periodic refresh cycles consume some memory 
bandwidth and CPU time (if the CPU itself manages refresh), slightly 
reducing overall performance. 

○ Power Consumption: Can consume more power than SRAM due to the 
continuous refresh operations, even in standby modes. 

○ Timing Criticality: DRAM operations involve very precise timing 
sequences for RAS, CAS, and data valid times, making board layout and 
signal integrity critical. 



 

In summary, while SRAM offers simplicity and speed, DRAM provides higher capacity 
at lower cost, but at the expense of increased interfacing complexity due to its refresh 
requirement and multiplexed addressing. Microcontrollers often integrate small 
amounts of SRAM on-chip for fast working memory, and rely on external DRAM 
controllers if large external memory is needed. 

3.3 Concepts of Interrupts: Types of Interrupts, Interrupt Handling, and 
Interrupt Service Routines (ISRs) 
In microcomputer systems, the CPU typically executes instructions sequentially. 
However, real-world events are asynchronous and require immediate attention (e.g., a 
button press, data arriving on a serial port, a timer expiring). Continuously polling 
(checking) every possible input consumes significant CPU time and makes the 
system inefficient. This is where interrupts come in. 

3.3.1 What are Interrupts? 

An interrupt is a hardware or software-generated event that causes the CPU to 
temporarily suspend its current normal program execution, save its current context, 
and then immediately transfer control to a special segment of code designed to 
handle that specific event. Once the event is handled, the CPU restores its saved 
context and resumes execution of the interrupted program from where it left off. This 
mechanism allows the CPU to efficiently respond to asynchronous events without 
constantly checking for them. 

3.3.2 Types of Interrupts: 

Interrupts can be broadly categorized based on their source and characteristics: 

● Hardware Interrupts: Generated by external or internal hardware devices. 
○ Maskable Interrupts (IRQ): These interrupts can be enabled or disabled 

(masked) by software. The CPU has a dedicated Interrupt Enable (IE) 
register or status bits that control whether it will acknowledge these 
interrupts. They are used for most peripheral devices. 

■ Examples: Keyboard press, mouse movement, data ready at a 
serial port, timer overflow, external pin change. 

○ Non-Maskable Interrupts (NMI): These interrupts have the highest 
priority and cannot be disabled by software. They are typically reserved 
for critical system events that require immediate attention and cannot 
be ignored. 

■ Examples: Power failure warning, memory parity error, watchdog 
timer expiration (indicating a software lock-up). 

● Software Interrupts (Traps/Exceptions): Generated by software instructions or 
by exceptional conditions arising during program execution. 

○ System Calls: Explicit software instructions (e.g., INT instruction in 
8086) used to request services from the operating system (e.g., file I/O, 
memory allocation). 

○ Exceptions/Faults: Occur due to an abnormal condition during 
instruction execution. These are often unplanned and indicate an error. 



 

■ Examples: Division by zero, illegal instruction opcode, memory 
access violation (accessing protected memory). 

3.3.3 Interrupt Handling Process: 

When an interrupt occurs, the CPU follows a specific sequence of steps to handle it: 

1. Current Instruction Completion: The CPU typically completes the execution of 
the instruction it is currently processing. 

2. Interrupt Request Acknowledgment: The CPU acknowledges the interrupt, 
assuming it is enabled (for maskable interrupts). 

3. Context Saving (PUSHing Registers): The CPU automatically (or through initial 
ISR code) saves the critical state of the currently executing program. This 
includes: 

○ The current value of the Program Counter (PC), so the CPU knows 
where to return after handling the interrupt. 

○ The contents of the Status/Flag Register, which reflects the CPU's state 
(e.g., carry, zero flags). 

○ Often, the contents of other critical registers (e.g., accumulator, 
general-purpose registers) are also saved by the Interrupt Service 
Routine itself. 
This saving process typically involves pushing these values onto the 
stack. 

4. Vectoring to the ISR: The CPU determines the source of the interrupt (if 
multiple sources exist) and finds the starting memory address of the 
corresponding Interrupt Service Routine (ISR). This is often done via an 
Interrupt Vector Table, which is a predefined table in memory containing the 
starting addresses (vectors) of all ISRs. Each interrupt source has a unique 
entry (vector) in this table. 

○ Numerical Example (Interrupt Vector Table): 
Assume an 8-bit microcontroller where Interrupt 0 (external interrupt) 
has a vector address of 0003H and Timer 0 interrupt has a vector 
address of 000BH. 
If Interrupt 0 occurs, the CPU will fetch the 2-byte (or 3-byte, depending 
on architecture) address stored at 0003H and 0004H and load it into the 
Program Counter, effectively jumping to the ISR for Interrupt 0. 

5. ISR Execution: The CPU jumps to and begins executing the instructions within 
the Interrupt Service Routine. The ISR performs the necessary actions to 
service the interrupt (e.g., read data from a port, clear a timer flag, update a 
counter). 

6. Context Restoration (POPping Registers): Before returning, the ISR restores 
the saved context by popping the register values back from the stack into their 
original registers. 

7. Return from Interrupt: The ISR ends with a special "Return From Interrupt" 
(e.g., RETI or IRET) instruction. This instruction not only restores the Program 
Counter and Flag Register (which were typically saved automatically) but also 



 

re-enables interrupts (if they were disabled automatically upon entering the 
ISR) and allows the CPU to resume normal program execution precisely from 
where it was interrupted. 

3.3.4 Interrupt Service Routine (ISR) / Interrupt Handler: 

An Interrupt Service Routine (ISR), also known as an Interrupt Handler, is a dedicated 
block of code specifically written to respond to a particular interrupt event. 

● Key Characteristics: 
○ Event-Driven: It only executes when its corresponding interrupt occurs. 
○ Atomic Operations: ISRs should be as short and efficient as possible to 

minimize the disruption to the main program flow. Long ISRs can 
negatively impact real-time performance. 

○ Context Preservation: The first few instructions of an ISR typically save 
any CPU registers that the ISR will use, and the last few instructions 
restore them, ensuring that the main program's context is not corrupted. 

○ Clearing Flags: The ISR must clear the interrupt flag that caused the 
interrupt, otherwise, the same interrupt will be triggered repeatedly 
immediately after returning. 

Interrupts are a powerful mechanism for creating responsive and efficient real-time 
embedded systems by allowing the CPU to efficiently multitask by reacting to 
asynchronous events without constant CPU oversight. 

3.4 Prioritizing and Nesting Interrupts: Managing Multiple Interrupt 
Sources 
In many real-world applications, a microcontroller might experience multiple interrupt 
requests from various sources simultaneously or in quick succession. To ensure that 
critical events are handled promptly and system stability is maintained, mechanisms 
for prioritizing and nesting interrupts are essential. 

3.4.1 Prioritizing Interrupts: 

When two or more interrupt requests occur at the same time, the CPU needs a way to 
decide which one to service first. Interrupt prioritization assigns a precedence level to 
each interrupt source. The CPU will always handle the highest-priority active interrupt 
first. 

● Fixed Priority Scheme: 
○ Mechanism: Each interrupt source is assigned a predefined, 

unchangeable priority level by the hardware designer or CPU 
architecture. For example, a Non-Maskable Interrupt (NMI) always has 
the highest priority. Among maskable interrupts, some might be 
hardwired to higher priority than others (e.g., External Interrupt 0 > 
Timer 0 > Serial Port). 

○ Advantage: Simple to implement. 



 

○ Disadvantage: Less flexible for dynamic application needs. 
● Programmable Priority Scheme: 

○ Mechanism: Microcontrollers often include dedicated Interrupt Priority 
Registers (IPRs) or similar control registers that allow the software to 
dynamically assign priority levels to different maskable interrupt 
sources. This offers flexibility in adapting the system's responsiveness 
to varying application requirements. 

○ Numerical Example (8051 Microcontroller): 
The 8051 has an IP (Interrupt Priority) register. 
Bit 0 (PX0) sets the priority for External Interrupt 0. 
Bit 1 (PT0) sets the priority for Timer 0 interrupt. 
Bit 2 (PX1) sets the priority for External Interrupt 1. 
Bit 3 (PT1) sets the priority for Timer 1 interrupt. 
Bit 4 (PS) sets the priority for Serial Port interrupt. 
If a bit in IP is set to 1, that interrupt has a higher priority. If 0, it has a 
lower priority. 
If IP = 00000011B (binary), then PX0 and PT0 are set to high priority. This 
means External Interrupt 0 and Timer 0 interrupt will have higher priority 
than other interrupts (if enabled). If two high-priority interrupts occur 
simultaneously, a default internal tie-breaker (often based on the 
physical position of their interrupt request lines) is used. 

○ Advantage: Highly flexible, allows software to tailor system behavior. 
○ Disadvantage: Requires careful software design to avoid unintended 

priority conflicts. 
● Interrupt Controller: In more complex systems with many interrupt sources 

(e.g., in a PC, or sophisticated microcontrollers), a dedicated Programmable 
Interrupt Controller (PIC) chip (like the 8259A) or an integrated peripheral is 
used. This controller manages multiple interrupt requests, prioritizes them, and 
presents a single interrupt signal to the CPU. It allows for advanced features 
like cascading (handling even more interrupts) and various priority modes. 

3.4.2 Nesting Interrupts: 

Interrupt nesting (or re-entrancy) refers to the ability of a higher-priority interrupt to 
interrupt a currently executing lower-priority Interrupt Service Routine (ISR). 

● Mechanism: 
○ When a lower-priority interrupt's ISR is running, the CPU's interrupt 

system might be configured to automatically disable further interrupts 
of the same or lower priority to prevent re-entering the same ISR before 
it completes. 

○ However, if a higher-priority interrupt request occurs while a 
lower-priority ISR is executing, and the interrupt system allows nesting, 
the CPU will: 

■ Suspend the currently executing lower-priority ISR. 
■ Save the context of the lower-priority ISR (including its return 

address, status, and any registers it was using). 
■ Jump to the higher-priority ISR. 



 

○ Once the higher-priority ISR completes and executes its "Return From 
Interrupt" instruction, the CPU restores the context of the interrupted 
lower-priority ISR and resumes its execution from where it left off. 

● Advantages of Nesting: 
○ Responsiveness: Ensures that truly critical, high-priority events are 

handled with minimal delay, even if the CPU is busy with less urgent 
tasks. 

○ Real-time Performance: Essential for applications where missing 
deadlines for high-priority events could lead to system failure (e.g., 
motor control, safety systems). 

● Challenges and Considerations for Nesting: 
○ Stack Management: Nesting places a heavier burden on the stack. Each 

time an ISR is interrupted by another, more context information is 
pushed onto the stack. If nesting occurs too deeply or ISRs do not 
properly manage the stack, a stack overflow (running out of stack 
memory) can occur, leading to a system crash. 

○ Shared Resources (Re-entrancy): If multiple ISRs (or an ISR and the 
main program) access shared global variables or hardware resources, 
nesting can lead to data corruption or incorrect behavior. For example, 
if ISR A starts modifying a global variable, and then ISR B (higher 
priority) interrupts it and also modifies the same variable, ISR A might 
resume with a corrupted value. 

■ Solution: Shared resources must be protected using techniques 
like disabling interrupts temporarily around critical sections of 
code that access shared data, or using mutexes/semaphores in 
systems with real-time operating systems (RTOS). 

○ Latency: While nesting improves responsiveness for high-priority tasks, 
it adds latency for lower-priority tasks, as their execution is further 
delayed by higher-priority ISRs. 

Properly managing interrupt priorities and carefully designing for nesting are crucial 
skills in embedded systems development, particularly in applications with stringent 
real-time requirements. 

3.5 Direct Memory Access (DMA): Principles, DMA Controller Operation, 
and Advantages for High-Speed Data Transfer 
In traditional CPU-controlled data transfer, every byte of data that moves between 
memory and a peripheral device (e.g., disk drive, network interface, high-speed ADC) 
must pass through the CPU. The CPU fetches the data, processes it (if needed), and 
then writes it to the destination. While simple for small transfers, this method 
becomes highly inefficient and a significant bottleneck for large blocks of data or 
high-speed peripherals because it constantly ties up the CPU. Direct Memory Access 
(DMA) is a specialized hardware mechanism designed to overcome this limitation. 

3.5.1 Principles of Direct Memory Access (DMA): 



 

DMA allows certain hardware subsystems within a microcomputer system to access 
system memory independently of the CPU. This means data transfers can occur 
directly between a peripheral device and memory (or memory to memory) without 
continuous CPU intervention. The CPU initiates the transfer, and then the DMA 
controller takes over, freeing the CPU to perform other tasks concurrently. 

● DMA Transfer Steps: 
1. CPU Programs DMA Controller: The CPU writes control words to the 

DMA controller's internal registers. These control words specify: 
■ Source memory address (or peripheral address). 
■ Destination memory address (or peripheral address). 
■ Number of bytes (or words) to transfer. 
■ Direction of transfer (memory to peripheral, peripheral to 

memory, memory to memory). 
■ Transfer mode (e.g., burst mode, single cycle mode). 

2. DMA Request: The peripheral device needing a data transfer sends a 
DMA Request (DREQ) signal to the DMA controller. 

3. DMA Acknowledgment and Bus Grant: The DMA controller then sends a 
Hold Request (HRQ) or Bus Request (BR) signal to the CPU. The CPU, 
upon receiving HRQ, completes its current instruction or memory cycle, 
then relinquishes control of the address, data, and control buses by 
putting its bus interface into a high-impedance state. It then asserts a 
Hold Acknowledge (HLDA) or Bus Grant (BG) signal back to the DMA 
controller. 

4. DMA Takes Control of Buses: Once HLDA is asserted, the DMA 
controller gains complete control over the system buses. 

5. Direct Data Transfer: The DMA controller directly manages the transfer 
of data between the source and destination. It generates the necessary 
memory addresses, asserts read/write signals, and controls the data 
flow, byte by byte or word by word, without involving the CPU. 

6. Transfer Completion: After the specified number of bytes has been 
transferred, the DMA controller deasserts its HRQ signal and optionally 
generates an interrupt to the CPU to indicate that the transfer is 
complete. 

7. CPU Resumes Control: The CPU, upon sensing the deasserted HRQ, 
takes back control of the buses and resumes its normal program 
execution. 

3.5.2 DMA Controller Operation: 

A DMA controller is a dedicated hardware peripheral (either a standalone IC like the 
8237 DMA Controller or integrated as a module within a microcontroller) that manages 
and executes DMA transfers. 

● Key Registers within a DMA Controller: 
○ Source Address Register: Stores the starting address of the source 

data. 



 

○ Destination Address Register: Stores the starting address of the 
destination location. 

○ Count Register: Stores the number of bytes/words to be transferred. 
This register decrements after each transfer. 

○ Control/Status Register: Contains bits to configure the transfer mode 
(e.g., read, write, auto-increment/decrement addresses, burst/cycle 
stealing), enable/disable channels, and report transfer status. 

● DMA Transfer Modes: 
○ Burst Mode (Block Transfer): The DMA controller acquires the buses 

once and transfers the entire block of data (all specified bytes) 
continuously before relinquishing control. This is the fastest mode but 
can cause the CPU to be idle for a longer period. 

○ Cycle Stealing Mode: The DMA controller acquires the buses, transfers 
one byte/word, then releases the buses back to the CPU. It then 
requests the buses again for the next byte. This "steals" individual 
memory cycles, allowing the CPU to continue executing instructions 
between transfers, but overall throughput is lower than burst mode due 
to repeated bus arbitration. 

○ Transparent Mode: DMA transfers occur during CPU idle cycles (e.g., 
when the CPU is decoding an instruction and not accessing memory). 
This mode has the least impact on CPU performance but is dependent 
on CPU bus activity and is slower than other modes. 

3.5.3 Advantages for High-Speed Data Transfer: 

DMA offers significant advantages, particularly for applications requiring high data 
throughput or efficient resource utilization: 

1. Increased System Throughput: By offloading large data transfers from the 
CPU, DMA frees the CPU to perform other computational tasks concurrently. 
This parallel processing greatly enhances the overall system's efficiency and 
throughput. 

○ Numerical Example: If a CPU takes 10 clock cycles to transfer 1 byte 
(including instruction fetch, decode, and execute), and a peripheral 
needs to transfer 1KB (1024 bytes). 

■ Without DMA: Total CPU cycles for transfer = 10 
cycles/byte×1024 bytes=10240 cycles. During this time, the CPU 
is entirely busy with the transfer. 

■ With DMA: The CPU spends perhaps 20-50 cycles to program the 
DMA controller. The DMA controller then handles the 1KB 
transfer, which might take 2 cycles/byte×1024 bytes=2048 cycles 
(if the DMA controller is highly efficient). During these 2048 
cycles, the CPU is free for almost all of that time, leading to 
significant performance gains for other tasks. 

2. Reduced CPU Overhead: The CPU is only involved in initiating and (optionally) 
receiving an interrupt upon completion. It doesn't need to execute instructions 



 

for each byte transfer, significantly reducing its workload and power 
consumption associated with data movement. 

3. Faster I/O Operations: Peripherals that generate or consume data at high rates 
(e.g., high-resolution ADCs, fast network interfaces, display controllers) can 
transfer data directly to/from memory at bus speeds, without being 
bottlenecked by the CPU's instruction execution speed. 

4. Improved Real-time Performance: In real-time systems, offloading data transfer 
to a DMA controller can ensure that the CPU remains available to respond to 
critical events and execute time-sensitive control algorithms, leading to more 
predictable and robust system behavior. 

5. Power Efficiency: By allowing the CPU to enter low-power states or execute 
less frequently while DMA operations are underway, DMA can contribute to 
overall system power savings, crucial for battery-powered devices. 

DMA is an indispensable feature in modern microcontrollers and 
microprocessor-based systems, enabling efficient management of high-volume data 
movement and allowing the CPU to focus on its primary role of executing application 
logic. 
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